
www.manaraa.com

Softw Syst Model (2016) 15:497–511
DOI 10.1007/s10270-014-0415-3

REGULAR PAPER

Extracting finite state representation of Java programs

Tamal Sen · Rajib Mall

Received: 24 May 2013 / Revised: 25 March 2014 / Accepted: 5 April 2014 / Published online: 24 June 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract We present a static analysis-based technique for
reverse engineering finite state machine models from a large
subset of sequential Java programs. Our approach enumer-
ates all feasible program paths in a class using symbolic exe-
cution and records execution summary for each path. Sub-
sequently, it creates states and transitions by analyzing sym-
bolic execution summaries. Our approach also detects any
unhandled exceptions.

Keywords Software reverse engineering · FSM ·
System modeling

1 Introduction

Many program components, especially those used as interac-
tive controllers, are state based. A state-based program may
behave differently in different states on an input. A state
model of a program is a behavioral model that depicts the dif-
ferent states of the program and the transitions among states
that are triggered by system functions invocations. Many
state model formalisms are available including FSM, Harel’s
[6] state chart and Petrinets [16]. State models are widely
being used to define and validate the behavior of a variety of
software systems including interactive systems, embedded
controllers, compilers, operating systems, and telecommuni-
cation systems. A state model can be used in test case gen-

Communicated by Prof. Gary Leavens.

T. Sen (B) · R. Mall
Department of CSE, Indian Institute of Technology, Kharagpur,
Kharagpur 721302, India
e-mail: tamal.sen@cse.iitkgp.ernet.in

R. Mall
e-mail: rajib@cse.iitkgp.ernet.in

eration, test case selection, software metric computation and
can also be helpful in understanding the dynamic behavior
of a program. Despite their apparent benefits, state machines
are rarely maintained over time. Dynamic nature of software
evolutions makes it difficult to keep design artifacts up to
date [24]. The need of reverse engineering state models from
implementations is thus multifold.

1. Software maintenance activities account for over 50% of
the total software development costs, as the maintainers
need to spend significant amounts of time to understand
the code before carrying out changes. Object-oriented
program features such as inheritance, polymorphism, and
dynamic binding make it difficult to statically determine
which methods would be bound at runtime. Additional
features of these programs such as multi-threading and
distributed execution further complicate the process of
code understanding. To help code understanding, main-
tainers often reverse engineer the design models when
these are either not available or are obsolete [4].

2. When using component-based development, the state
models can be used for effective testing of an applica-
tion. In [17], we had proposed a technique for regres-
sion test reduction based on analysis of component state
model.Beydeda et al. [1] andGallagher et al. [5] have also
proposed techniques for efficient integration testing in a
component environment based on the implicit assump-
tion that the state transition specifications for individual
components are available a priori. When the state transi-
tion specifications are unavailable, it becomes necessary
to reverse engineer these from the code, before many of
the available test techniques can be applied.

3. In themodel-driven development (MDD) paradigm, soft-
ware systems are typically developed by first building
their state models, and then implementing these models.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-014-0415-3&domain=pdf

www.manaraa.com

498 T. Sen, R. Mall

The source code of such systems is generated essentially
by mapping states and transitions into concrete program-
ming constructs [18]. However, modifications in the gen-
erated code might affect states and transitions, and there-
fore, it might be necessary to reverse engineer the state
model from the modified code to identify changes in the
state transition behavior caused by the modification.

In this work, we propose a technique for extracting a finite
state model from Java programs based on a static analysis-
based technique by Kung et al. [12]. Our main objective of
this work is to extract a reasonably useful model by overcom-
ing some of the shortcomings of Kung et al.’s [12] technique.
For a class c in a program, we construct an object state model
(OSM), and we reuse it in the construction of OSM of any
class that is dependent on c. We execute each method of
a class symbolically to compute an execution summary for
each execution path. By analyzing execution summaries, we
define states as a partition over the field values, and tran-
sitions as the change in field values due to a method invo-
cation. Transitions may be guarded by a condition which is
essentially a boolean constraint over the parameter variables
of the method that causes it. The extracted state model also
includes exceptional states and exceptional transitions to rep-
resent occurrence of runtime exceptions that are not handled
in a path and might cause the program to fail.

For model extraction, we analyze the Java bytecode
instead of source code, since bytecode analysis has a number
of advantages. A few of these advantages are as follows:

– Often, source code is not available. This is especially true
in a component-based development environment.

– A bytecode analyzer need not carry out tasks such as
name resolution and type checking as these are ensured
by the Java compiler.

– A bytecode analyzer needs to deal with much fewer con-
structs than a source analyzer and thereby is less complex
[14].

We have named the technique State model extractor for
Java programs (StateJ).

This paper is organized as follows: in Sect. 2, we discuss
several background concepts; in Sect. 3,we formalize various
aspects of an object state model; in Sect. 4, we describe our
approach for constructing an object state model. In Sect. 5,
we provide the details of experiment setup and results of the
experiments. In Sect. 6, StateJ is compared with other related
approaches and finally Sect. 7 concludes the paper.

2 Background concepts

In this section, we discuss the background concepts based on
which we have developed our approach.

2.1 Symbolic execution of Java programs

Symbolic execution [9] is a static program analysis tech-
nique that considers symbolic values as the inputs to the pro-
gram instead of actual ones (concrete values). The outputs
are expressed as a function of the symbolic inputs [15]. We
implement our symbolic execution engine by extending sym-
bolic execution extension (jpf-symbc) of a well-known Java
model checker called Java PathFinder (JPF) [8]. JPF is devel-
oped in NASA, and it has been widely used to find faults
in complex Java components. JPF is available as a highly
extensible open-source tool. JPF systematically explores pos-
sible execution states and automatically detects anomalies
such as deadlock, race conditions, unhandled exceptions. It
is also capable of verifying user-defined properties specified
as assertions. Following are the important features supported
by JPF.

– Symbolic/concrete method execution JPF can be config-
ured to execute a method either symbolically or con-
cretely. A concrete method is invoked with the argu-
ments that are actually passed to it from the program.
On the other hand, if a method is marked as symbolic, its
parameters are considered to be unrestricted in the sense
that these can hold any value of its domain at runtime.
The actual arguments passed to a symbolic method are
ignored, and these are initializedwith a symbolic value of
proper type before the symbolic execution of the method
begins.Amethod parameter of non-primitive type (object
of another class or an array) is not initialized immediately
before starting symbolic execution, but initialized lazily
when it is first accessed during the symbolic execution.
The fields of an object can also be configured to be con-
crete or symbolic. A symbolic field is initialized in the
same way that a parameter of a symbolic method.

– Stack JPF simulates the stack operations during symbolic
execution. Each thread has a stack which stores the local
variables including method parameters for each invoked
method.

– Heap The symbolic execution engine also maintains a
heap, referred to as symbolic heap, in order to store
objects. The heap is represented as a graph inwhich nodes
represent objects, primitive values and symbolic expres-
sions. An edge in the heap connects a node representing
an object and a node representing a field of the object.

– Execution state In JPF, a symbolic execution state (should
not be confused with object state) consists of a global
heap and a stack (in general, one stack for each thread, but
we consider here only single-threaded programs), as well
as program counter (address of the instruction currently
being executed). Additionally, each symbolic state also
stores the path condition.

123

www.manaraa.com

Extracting finite state representation of Java programs 499

– Choice handling JPF explores all feasible paths of a pro-
gram recursively using a depth first search approach.Dur-
ing symbolic execution, while evaluating a branch con-
dition, sometimes we do not have enough information to
decidewhich branch to follow. In this case, it is necessary
to non-deterministically follow both branches to safely
simulate all possible real executions.At a branching point
(such as, a conditional instruction), JPF registers a choice
generator to explore all available branches. The choice
generator is initialized with the set of non-deterministic
choices available at that point. Subsequently, the cur-
rent symbolic execution state is saved, path condition is
updated with the first choice, and the execution proceeds.
In this way, when execution reaches the path end, it back-
tracks to a previously saved state and the unprocessed
choices in that state are explored; it backtracks again if
no choice is left for processing. The execution terminates
if no unprocessed choice is left. JPF also supports regis-
tering choice generators with user-defined choices at any
point of a program. JPF executes the rest of the path for
each user-defined choice in the same way as it handles
branch conditions.

2.2 State model extraction using static analysis

Depending on the values of member variables of an object,
a method may produce different output even when invoked
with the same set of arguments. This feature can be exploited
to model an object as a state transition system in which the
states of the object are defined by the values assumed by a
subset of member variables. However, it is not possible to
describe each possible set of values of member as a distinct
state because of the inherent combinatorial explosion of the
number of states. Therefore, equivalence classes on the val-
ues of member variables need to be introduced [21].

Several researchers including Tonnela et al. [21] and
Walkinshaw et al. [23] had pointed out the difficulty in auto-
matically extracting the states from an arbitrary program.
In their approaches, they assumed that abstract states (and
sometimes abstract interpretation of the methods also) are
identified manually while the transitions among states are
identified automatically by static analysis. However, Kung
et al. [12] proposed an approach which identifies states of a
program automatically by analyzing conditions on member
variables that appear in conditional statements and control
the execution path. They computed intervals on the values of
eachmember variable of the class. Using these intervals, they
computed a partition over the values that member variables
may assume. Subsequently, by examining symbolic execu-
tion summaries, they identified the state changes (transition)
based on the modifications to the member variables in the
path.

Fig. 1 An Example class to demonstrate the different types of atomic
conditions

We provide an overview of working of Kung et al.’s tech-
nique by applying it to the Java program shown in Fig. 1.
Symbolic execution of the method meth explores a set of
paths. Path conditions of these paths contain the following
conditions on the state variables.

– two > 2∧ one<1
– two > 2∧ one ≥ 1
– two ≤ 2∧ one < 1
– two ≤ 2∧ one ≥ 1

By examining these conditions, the following intervals on
the state variables are computed: (two≤ 2), (3 ≤ two), (one
≤ 0), (1 ≤ one). Kung et al’.s technique identifies states (S0,
S1, S2, S3 and S4) by computing all possible combinations
on the intervals of state variables which are shown below.

– The object is uninitialized :S0
– (two ≤ 2) ∧ (one ≤ 0) :S1
– (3 ≤ two) ∧ (one ≤ 0) :S2
– (two ≤ 2) ∧ (1 ≤ one) :S3
– (3 ≤ two) ∧ (1 ≤ one) :S4

After creating states, the proposed technique creates the
transitions based on how state variables are updated in a path.
For example, consider the path having path condition (two >

2)∧ (one < 1)∧ (arg2 > arg1)∧ (arg2+ two == 4). This
path can only be executed when an object of the class is in
S2. For this reason, Kung et al.’s technique determines S2
as a pre-state for the transitions that are in the path. The
path updates the value of variable two with 2 but variable
one remains unchanged; therefore, the state after execution
of the path is S1, which is referred to as post-state. Kung’s
technique creates a transition between the pre-state (S2) and
thepost-state (S1) pairs. The transitions in the complete state
model of AddSub have been shown in a tabular form in
Table 1.

3 Framework

In this section,wefirst present algorithms for extracting states
and transitions from symbolic execution summaries. Subse-
quently, we define product of two object state models and
prove that the complete state model of a derived class is the

123

www.manaraa.com

500 T. Sen, R. Mall

Table 1 Transitions of the object state model of class AddSub

Id Method Source state Target state Guard Returned expression

t1 meth() S3 S1 arg2>arg1 arg1+arg2

t2 meth() S3 S3 arg2≤arg1 arg1−arg2

t3 meth() S2 S2 – arg1−arg2

t4 meth() S1 S1 – arg1−arg2

t5 meth() S4 S4 – arg1−arg2

t6 Example() S0 S1 – Void

product of its partial state model and the state model of its
parent class.

StateJ uses the following formalisms concerning symbolic
variables and symbolic expressions which have been adopted
from Xie et al.’s work [25].

– Each symbolic variable has a type, which is considered
to be one of the Java types.

– A symbolic expression is either a symbolic variable, a
Java constant or an expression in which a set of sym-
bolic expressions of the appropriate operand types are
connected with an operator. For example, x1 and x2 may
be each a symbolic variable (and thus also a symbolic
expression) of type int and x1+x2 and x1>x2 are sym-
bolic expressions of type int and boolean.

– A symbolic expression of type boolean is also referred to
as a condition.

An atomic condition is either a symbolic variable of type
boolean or an expression involving two symbolic expressions
connected by a relational operator. A compound condition
is a set of atomic conditions connected by conjunction (∧),
disjunction (∨) or negation (¬) operator.A conditional literal
in either an atomic condition or the negation of an atomic
condition [12].

Example 1 If b1 is a symbolic variable of type boolean, then,
b1 itself is an atomic condition. Similarly, x1 + x2 > 2 is an
atomic condition where x1 and x2 are symbolic variables of
primitive types (int, float, long, double, etc.). b1 ∧ x1 + x2 >
2,¬(x1 + x2 > 2) are examples of compound conditions
since these are formed by applying conjunction and negation
operators on a set of atomic conditions. b1, x1 + x2 > 2
and ¬(x1 + x2 > 2)—these three conditions can also be
referred to as conditional literals since each of these is either
an atomic condition or negation of an atomic conditions.

A conditional literal can be categorized into one of the
following three subtypes.

Definition 1 (Member dependent literal (MDL)) A condi-
tional literal is a Member Dependent Literal if the variables
used in it are member variables of the enclosing class.

Definition 2 (Parameter dependent literal (PDL)) A condi-
tional literal is a parameter dependent literal if the variables
used in it are the parameters of a method of the enclosing
class.

Definition 3 (Mixed literal (MXL)) A conditional literal is a
mixed literal if it is neither an MDL nor a PDL.

Example 2 Consider the class AddSub shown in Fig. 1. The
condition in line 4 consists of three conditional literals: two >

one, arg2 > arg1 and arg2 == two. Among them, two > 2
and one < 1 are MDL since both of them consists of only
state variables, arg2 > arg1 is PDL since arg2 and arg1 both
are parameters of method meth(int,int) and arg2 +
two == 4 is an example of MXL since arg2 is a parameter
of meth(int,int) whereas two is a state variable.

For each type of conditional literals LT, we define a deci-
sion function called LT(l), where l is an arbitrary conditional
literal. LT(l) returns true only if l is of type LT. For example,
we define a function called MDL(l),MDL(l) to be true only
if l is an MDL.

Example 3 For the conditional literal two > one,MDL(two
> one) returns true. Similarly, MDL(arg2 > arg1) returns
f alse.

3.1 Path summary

Symbolic execution explores every path of a method under
consideration.1 The parameter variables of the method as
well as member variables of the class (which encloses the
method) are treated as inputs to the method and these are
considered as symbolic.During symbolic execution of a path,
a set of information is recorded which is processed later in
order to extract the states and transitions. Collectively we
refer to these recorded information as path summary. A path
summary, obtained by symbolic execution of a path, has the
following attributes:

1 Symbolic execution has inherent limitations, which makes it
infeasible to explore all paths of an arbitrary method in the presence
of loops and recursions. We discuss implementation details of our sym-
bolic execution engine in Sect. 4.

123

www.manaraa.com

Extracting finite state representation of Java programs 501

– pc—The path condition of the path. It is represented as
conjunction of a set of conditional literals. According to
the definition of path condition [9], pc must be satisfied
by the inputs, for the path to be executed.

– fn—The method to which the path belongs.
– Vmap—A set of name-value pairs of updated member
variable identifiers and their symbolic values.

– exception—This attribute represents the type of an excep-
tion raised during execution of the path but that is not
handled. This attribute is empty if there is no unhandled
exception in the path.

– r—A symbolic expression returned by fn at the end of
execution of the path.

Given a path summary ps, an attribute a of ps is referred
to as ps.a. For example, Vmap attribute of ps is referred to
as ps.Vmap.

3.2 State

Let us assume that, for a certain class, n paths have been
explored by the symbolic execution of all methods of a
class and the path summaries of these paths are denoted by
ps0 . . . psn−1. Now let M be the set of all MDLs from all
path conditions, i.e.,

M =
n−1⋃

i=0

{m|m ∈ cset (psi .pc) ∧ MDL(m)}

where cset(psi .pc) represents a set of conditional literals that
have been used in psi .pc. The states of an object are defined
as a partition over the set of values of member variables.
In StateJ, a state s has two attributes: a unique state label
called s.label and a condition called s.cond. An object said
to be in a state s if the values of its member variables satisfy
s.cond. StateJ identifies the states using the steps presented
in Algorithm 1.

Example 4 Let us assume that {m1,m2,m3} represents the
set of all MDLs. A (true, true, true) valuation to these
MDLs describes a state with state condition m1∧m2∧m3.
Similarly, A (false, true, false) valuation describes a state of
state condition ¬m1 ∧ m2 ∧ ¬m3.

Theorem 1 The set of all state conditions of anobject defines
a partition over the values of its member variables.

Proof Let M = {m1,m2,m3 . . .mk} be the set of k MDLs
over n member variables of a class and SC be the set of all
state conditions identified using Algorithm 1. Let us assume
V = 〈v1, v2, v3, . . . , vn〉 is a vector that contains a set of
values assumed by n members in order. Now, in order to
prove that the set of conditions in SC defines a partition over
the values of n members of the class, we need to show: (1)
V satisfies at least one condition in SC , and (2) V satisfies
only one condition in SC .

Algorithm 1 Algorithm for Creating States
Require: M : set of allMDLs, PS: set of all path summaries
Ensure: S: set of states.
1: initialize S
2: for all possible true/false valuation v to M literals do
3: Create a compound condition cv such that,

cv =
∧

ci∈M

{
ci if ci is true in v
¬ci if ci is false in v

4: Create an empty state s
5: Assign an unique label to s.label
6: s.cond = cv
7: S = S ∪ s
8: end for
9: Create an empty state start
10: start.cond = false
11: start.label = 0
12: S = S ∪ start
13: for all ps ∈ PS do
14: if ps.exception is set then
15: Create an empty state ex
16: Assign an unique label to ex .label
17: ex .cond = false
18: S = S ∪ ex
19: end if
20: end for

1. Let us choose an arbitrary condition sc from SC . As per
our definition, s is a conjunction of kMDLs. Let us assume
V satisfies k1 literals in sc but contradicts remaining (k−
k1) literals. Now theremust be a literal sc′ in SC in which
those k1 literals appear as it is, but the other (k − k1)
literals appear as negated. Hence, V must satisfy sc′, and
therefore, it can be concluded that an arbitrary valuation
V tonmember variableswill satisfy at least one condition
in SC .

2. Let us assume that, for the sake of contradiction, V sat-
isfies more than one state condition, that is sc and sc′
(sc, sc′ ∈ SC) both. But as we know, there must be at
least one mi ∈ M in sc which appears as negated in sc′.
Therefore, if V satisfies both sc and sc′, it has to sat-
isfy both mi and ¬mi , which is not possible. Therefore,
our assumption must be wrong that V satisfies more than
one state condition. Thus, it can be concluded that V can
satisfy only one condition in SC . ��

3.3 Transition

The notion of transition in our approach is very similar to
that of Kung et. al’s approach. Execution of each path leads
to one or more state transitions depending on the exact way
in which the member variables of the object are modified in
the path. In StateJ, a transition t has the following attributes:
pre and post states, the method fn that triggers t, a guard
condition g on the parameters of fn which must be satisfied
for t to occur, and a return expression r which is a symbolic

123

www.manaraa.com

502 T. Sen, R. Mall

expression returned by fn when the transition t occurs. The
steps presented inAlgorithm2 identifies the set of transitions.

Algorithm 2 Algorithm for Creating Transitions
Require: S: Set of all states, PS: Set of all path summaries
Ensure: T : Set of transitions
1: Initialize T as empty set of transitions
2: for all ps ∈ PS do
3: for all si ∈ S do
4: if satisfy(si .cond ∧ ps.pc) OR isConstructor(fn) then
5: if isConstructor(fn) then
6: pre = start
7: else
8: pre = si
9: end if
10: for all s j ∈ S do
11: if satisfy(weak_pre(s j .cond, p.Vmap) ∧ ps.pc) OR

(ps.exception is set) then
12: if ps.exception is set then
13: post = find_state(ps.exception)
14: else
15: post = s j
16: end if
17: fn = ps.fn
18: g = conjunct ({l|l ∈ cset (weak_pre(s j .cond,

p.Vmap) ∧ ps.pc) ∧ PDL(l)})
19: r = ps.r
20: Create transition t = (pre, post, fn, g, r)
21: T = T ∪ t
22: end if
23: end for
24: end if
25: end for
26: end for

The following are the subroutines that have been used in
Algorithm 2.

– satisfy(cond): returns true if cond is satisfiable, false oth-
erwise.

– find_state(label): returns a state s for which s.label =
label.

– weak_pre(cond,map): returns a condition after replac-
ing a set of variables in cond with their values as specified
in map.

– conjunct (cond_set): returns a compound conditionwhi-
ch is a logical conjunction of the literals in cond_set .

– cset(cond): returns the set of conditional literals used in
a condition cond.

– isConstructor(fn): returns true if fn is a constructor
method of the class under consideration.

Algorithm 2 analyzes path summary ps of each path to
identify the transitions that can occur during execution of
the path. In line 4, the algorithm checks whether the state
condition of a state si is satisfiable in conjunction with the
path condition ps.pc. If so, the path can cause a transition

from the state pre. In line 5, the algorithm checks whether
the method ps.fn is a constructor method. For a path belongs
to a constructor, the pre state of possible transitions is always
the start state.

After that, in the lines 10–23 the algorithm iterates through
set of all states to identify possible post states. Modifica-
tion of member variables in a path leads to a state change
in the object. A state s j can be a post state for a transition
occurs during execution of p if the weakest precondition is
true in conjunction with the path condition of the path, i.e.,
(weak_pre(s j .cond, p.Vmap) ∧ ps.pc) is true.

The block of lines 12–16 checks whether the exception
attribute of thepath summary ps.exception holds a non-empty
value, which indicates that the execution of the path causes an
unhandled exception. In that case, the post state is nothing
but an exception state which corresponds to the exception
type stored in ps.exception.

In line 18, the algorithm identifies the set of all PDLs
that must be satisfied in order for the transition to occur.
The conjunction of those PDLs become the guard of the
transition.

Note that, the condition in line 4 may be satisfied by more
than one state condition. Similarly, multiple post-state can
be matched satisfying the condition in line 11. Thus, a single
path creates multiple transitions each of which is possibly
feasible in the runtime.

We do not include MXLs in transition guard since MXLs
may contain private member variables. Ignoring an atomic
condition from the guard of a transition makes the guard
weaker, and thus, it would not lead to miss a transition. How-
ever, there is a possibility that a transition exists in the state
model but may never occur during real execution.

StateJ invokes SAT solvers to identify pre- and post-states
during creating transitions. When a SAT call fails to return
within a specified time bound, the return value is assumed to
be true. This assumption may result in creating a transition
whichwould not get created if the boolean formula is actually
false, but that would not lead to miss transitions.

3.4 Object state model

Based on the states and transitions identified for an object,
we define the object state model of a class as the following.

Definition 4 (Object state model (OSM)) An object state
model of a class is a quadruple: 〈S, start,Exception, T 〉
where

– S—finite set of states.
– start ∈ S—represents a state with uninitialized state
variables. The state condition of start, start.cond, eval-
uates to f alse.

123

www.manaraa.com

Extracting finite state representation of Java programs 503

– Exception ⊆ S—The object transits to one of these states
when an unhandled exceptions is raised.

– T—finite set of transitions.

Definition 5 (Default OSM) Default OSM of a class is
(S, start,Exception, T) where,

– S = {{start} ∪ {exception} ∪ {s0}}.
s0.cond = true
exception.cond = false

– start = start state
– Exception = {exception}
– T = {(s0, s0, fn, true, unknown)|fn is a method of }

{the class} ∪
{(s0, exception, fn, true, unknown)|fn is a method of }
{the class}.

Definition 6 (Product of two OSM) Product of two given
OSMs osm1 : (S1, start1, Exception1, T1) and osm2 :
(S2, start2, Exception2, T2)yields anotherOSM (S, start,
Exception, T), for which:

– S = {{S1\start1} × {S2\start2}} ∪ (start1, start2).
The state condition of a state (si , s j) ∈ S holds the con-
dition: (si , s j).cond ⇔ si .cond ∧ s j .cond.

– start = (start1, start2)
– Exception = {(s1, s2)|s1 ∈ Exception1 or s2 ∈

Exception2}
– T = {((pre1, pre2), (post1, post2), f n, g, r)|((pre1,

post1, f n, g, r) ∈ T1 or (pre2, post2, f n, g, r) ∈
T2)where(pre1, pre2), (post1, post2) ∈ S}.

Lemma 1 If a set of methods is added to a class without
affecting the set of member variables, the OSM of the class
becomes a product of its existing OSM and the OSM of a
class having same set of members but only new methods.

Proof Let us assume the existingOSMof the class (say c1) is
osm1 : (S1, start1, T1), theOSMof the class (say c2) consid-
ering only the newly addedmethod is osm2 : (S2, start2, T2)
and osm f : (S f , start f , T f) is the OSM of the class (say
c f) constructed from all methods in the class including the
new ones. We shall prove that osm f is the product of osm1

and osm2. In order to do that, we need to show that all three
conditions provided in Definition 6 are hold for this case.

1. First we shall prove S f = {S1\start1 × S2\start2} ∪
(start1, start2). The condition can only be true if for
all sk ∈ S f , there exists a unique pair (si , s j), where
si ∈ {S1\start1} and s j ∈ S2\start2}, such that
sk .cond ⇔ si .cond ∧ s j .cond.
Let V be an arbitrary vector of values assumed by mem-
ber variables. Since S1 and S2 also defines partitions over

the values of same set of member variables, if V satisfies
sk .cond, V must satisfy si .cond for a unique si ∈ S1,
and s j .cond for a unique s j ∈ S2. Thus, it is proved that,

sk .cond → si .cond ∧ s j .cond (1)

EachMDLmi appears in sk .cond also appears in si .cond
or s j .cond, either asmi or as¬mi , since ifmi is explored
during construction of osm f , it must have been explored
during construction of osm1 or during construction of
osm2. Now, if V does not satisfy sk .cond, there exists at
least oneMDL, saym j , in sk .cond which is not satisfied
by V . Sincem j also appears in si .cond or in s j .cond, V
will not satisfy at least one of these which contains m j .
Hence, if V does not satisfy sk .cond it fails to satisfy
either si .cond or s j .cond. Therefore, it can be said that,

¬sk .cond → ¬si .cond ∧ s j .cond (2)

From Eqs. 1 and 2 it is concluded that

sk .cond ⇔ si .cond ∧ s j .cond (3)

2. start f represents (start1, start2) since start f .cond =
f alse and both start1.cond = f alse start2.cond =
f alse, and thus, sk .cond ⇔ si .cond ∧ s j .cond holds.

3. Consider a transition (prek, postk, f n, g, r) ∈ T f . Let
us assume, during this transition, f n causes a change in
values of member variables from Vpre to Vpost , where
Vpre and Vpost are two vectors of values of mem-
ber variables. Therefore, Vpre satisfies prek .cond and
Vpost satisfies postk .cond. We have already proved that
there exists a unique prei ∈ S1 and a unique pre j ∈
S2 such that prek .cond = prei .cond ∧ pre j .cond.
Therefore, Vpre satisfies both prei .cond and pre j .cond,
and Vpost satisfies both posti .cond and post j .cond.
Hence, there is a transition (prei , posti , f n, g, r) in
osm1 or there is a transition (pre j , post j , f n, g, r)
in osm2. Thus, it is proved that for each transition
((prei , pre j), (posti , post j), f n, g, r) ∈ T f there is a
transition (pre1, post1, f n, g, r) ∈ T1 or (pre2, post2,
f n, g, r) ∈ T2), where (pre1, pre2) ∈ S and
(post1, post2) ∈ S. ��

Definition 7 (Partial OSM) The OSM of a class which is
constructed only considering the methods that belong to the
class (except those that are inherited from the parent class)
is called partial OSM of the class.

Definition 8 (Complete OSM) The OSM of a class which is
constructed considering all methods that the class can access
(including those that are inherited from the parent class) is
called partial OSM of the class.

123

www.manaraa.com

504 T. Sen, R. Mall

Theorem 2 The complete OSM of any class is a product of
its partial OSM and the OSM of its parent class.

Proof Let us assume a class c j having a set of member vari-
ables I j and a set of methods Fj extending another class ci
having a set of member variables Ii and a set of methods
Fi . By extending ci , c j gains access to member variables of
ci and also methods of ci . The set of member variables c j
can access is Ii ∪ I j . Though there can be some member
variables of ci that cannot be accessed from c j (private vari-
ables), without loss of generality, it can be assumed that those
variables are unused in c j . Similarly, c j can access Fi ∪ Fj

methods assuming private methods of ci are not used in c j .
Now let the OSM of ci be osmi and the OSM of c j with-

out considering inherited methods is osm j . Now the state
model (say osm f) of c j considering inherited methods can
be viewed as a state model of c j after adding a set of method
Fi with the existing set of methods (i.e., Fi = Fi ∪ Fj).
Hence, using Corollary of Lemma 1, it can be said that osm f

is of product osmi and osm j . ��

4 Implementation

In this section, we discuss our state model extraction
approach StateJ. StateJ statically analyzes Java bytecode and
reverse engineers the states and transitions. To simplify the
problem of reverse engineering state model, we assume the
following:

– Programs do not contain static variables/methods.
– Member variables are always private and can be accessed
through appropriate methods.

– There is no recursive method call.
– There is no circular dependency among classes.
– There is no concurrency/parallel execution of methods
using threads.

Though the first two assumptions look serious since
most of the real world programs would contain static vari-
ables/methods and public variables. However, any program
having these kinds of features can easily be refactored so that
it fits in the existing setup. For example, a public variable can
be replacedwith a private variable and a set of getter and setter
methods. Similarly, static variables/methods can be handled
by considering the class object associated with each object
for state model extraction.

StateJ extracts state models in a modular fashion instead
of carrying out full interprocedural symbolic execution of an
input program. The OSM of each class is extracted individ-
ually, and it is reused during extracting OSM of a dependent
class. The main advantage of modular analysis is reusability.
The symbolic execution engine need not execute the same
methods multiple times even if these are invoked in mul-

tiple classes. At first, StateJ analyzes dependencies among
the classes of a Java program under consideration. It deter-
mines an ordering among classes inwhich statemodel should
be constructed for individual classes. Subsequently, for each
class, the state model is constructed by first symbolically
executing all methods of the class and then identifying states
and transitions by processing the path summaries.

4.1 Class dependency analysis

In StateJ, an OSM of a class ci is reused during construction
of OSM of another class c j if one of the following conditions
holds:

– c j has an attribute which is a reference to ci .
– ci is used as parameter in the methods of c j .
– ci is instantiated locally in c j .
– c j extends ci .

A class dependency graph (should not be confused with
ClDG of Larsen et al. [13]) is constructed to represent above
mentioned dependencies among the classes in a set. It is a
directed graph in which each node represents a class, labeled
by the class name; a directed edge from a node ni to a node
n j denotes that the class represented by ni is dependent on
the class represented by n j . Since we assume that, no circu-
lar dependency exists among the classes, no cycle exists in
the class dependency graph. Consequently, the class depen-
dency graph becomes a directed acyclic graph on which we
compute a reverse topological order. In the reverse topolog-
ical ordering of classes, a class ci appears before a class c j
if there is a directed edge from the node representing c j to a
node representing ci , i.e., c j depends on ci . The state model
of the classes are constructed in the reverse topological order.

4.2 Symbolic execution of methods

In this step, each method of a class is executed symboli-
cally in order to compute path summaries for all feasible
paths. In StateJ, the role of the symbolic execution engine is
to interpret various program features abstractly and encode
these into path summaries. The symbolic execution engine
is implemented by extending the JPF symbolic execution
engine. It is capable of handling class inheritance, loops,
exceptions and complex object interactions. In the following
subsections we discuss how StateJ handles various features
of a Java program.

4.2.1 Object manipulation

Object references can appear as class members, as method
parameters or as local variables. For each object reference
ref in the program, StateJ maintains two additional symbolic

123

www.manaraa.com

Extracting finite state representation of Java programs 505

Table 2 Classes and corre-
sponding integer id Class name Integer Id

unknown −1

null 0

AddSub 1

UseAddSub 2

variables of type int, called ref.type and ref.state so that
conditional literals on these variables can be analyzed by a
SAT solver. StateJ assigns a unique integer to each class in the
program (refer Table 2). The variable ref.type holds the inte-
ger value that corresponds to the type of the object pointed
by ref whereas ref.state holds the present state of the object
pointed by ref. ref.type may hold ‘0’ (null) to represent
that no object is being pointed by ref. ref.type may also hold
‘−1’ if the type of ref cannot be determined by the symbolic
execution engine (bounded loop unrolling, etc.). Any opera-
tion on ref (such as, assignments, null checking, instanceof
checking, initialization andmethod invocation) is interpreted
as a manipulation of these two additional symbolic variables.
Therefore, results of any complex operations on object ref-
erences can be encoded into the path summary using these
two special symbolic variables and the algorithms presented
in Sect. 3 can be applied. Conditional literals using ref.type,
ref.state are treated as MDL or PDL depending on whether
ref is a member variable or it is a method parameter.

Lazy initialization As we pointed in Sect. 2.1, a reference
variable ref belonging to method parameters or class mem-
bers is not initialized until it is accessed by an instruction.
When the execution first accesses ref, the reference is ini-
tialized non-deterministically with each possible compatible
object types, in order to simulate possible real executions.
The compatible object types of ref include null and also
those object types that are derived from the declared type
of ref. For example, if a class A extends another class B,
during lazy initialization, a reference of type A will be non-
deterministically initialized with null, an object of A and also
with an object of B since the reference can hold any of these
three at runtime.

StateJ uses JPF choice generator API to explore a path
with all such choices of ref.type.

Assignments An assignment of an object reference into
another (of the form ref1=ref2) is interpreted by copying the
values of ref2.type and ref2.state into ref1.type and ref1.state,
respectively.

Method invocation Invocation of a method on an object ref-
erence ref may update the member variables of the receiver
object whichmay not be visible (when themethod invocation
changes privatemembers of the receiver) in the sender object.

Fig. 2 A class using an object of AddSub class shown in Fig. 1

The changes in those variables can be abstractly interpreted
as a state change(i.e., a transition) of the receiver object. The
invoked method causes such transition (say t) in the receiver
object based on (1) the current state (current value of ref.state)
and (2) the arguments passed to the method.

According to class dependency notion described in
Sect. 4.1, the sender object is dependent on the receiver
object, and therefore, the receiver object’s statemodel should
be available when another object (sender) invokes a method
on it. If the invoked method belongs to a class for which
state model is not constructed earlier (such as, for a JDK
library class), a default OSM (refer to the Definition 6) is
assumed for that class. From the OSM of the receiver object,
StateJ identifies all transitions that are realizable due to this
method call. After that, StateJ explores the current path, using
JPF choice generator, assuming any of those transitions can
occur at runtime. For each transition choice (pre,post,fn,g,r),
an atomic condition ref.state==pre is added into the current
path condition. The method invocation changes the state of
the object form pre to post. Therefore, the value of re f.state
should be updated with post after the method invocation. r
is considered as the return value of the invoked method.

Example 5 Consider the class shown in Fig. 2, in Line
17, refA invokes a method AddSub.meth(int,int).
The method meth can cause the following transitions:
t1, t2, t3, t4 and t5 (refer Table 1). Therefore, execution
should explore all these choices using JPF choice genera-
tor. Let us consider transition t1 : (S3, S1,meth, arg2 >

arg1, arg2 + arg1) as a choice taken by the execution
engine. The path condition is updated with refA.state == S3
(it becomes refA.type==1&& refA.state == S3&& (arg2 >

arg1)), refA.state is updated with S1, and the return value of
the method becomes 10 (since, arg1 + arg2 = 5 + 5 = 10).

4.2.2 Loop handling

Symbolic execution of programs with loops may potentially
explore infinitely many paths. The existing symbolic execu-
tion engine in JPFunrolls a loop indefinitelywhichmay result
in non-termination. This is why, loops need to be specially
handled in order to systematic exploration of feasible paths.
In bytecode, loops are implemented using backjumps; an
example is shown in Fig. 3. If a backjump instruction occurs
and later, in the same path, an instruction is found which

123

www.manaraa.com

506 T. Sen, R. Mall

Fig. 3 A sample byte code representing a loop

has been executed earlier, a presence of loop is detected.
The region between the jump location and the location of
the backjump instruction is identified as the loop body. If
a loop is detected in a path, StateJ unrolls the loop until k
th iteration, where k is a user-defined parameter. If the loop
does not terminate even after k iterations, the execution of
the instructions inside the loop body are skipped. Since the
number of loop iteration is not known a priori, the variables
updated inside a loop are conservatively treated as unknown.
StateJ assigns a special symbolic variable called unknown
to all variables updated inside the loop body of a loop that
iterates more than k times. If a method is invoked on a ref-
erence variable ref, ref.state is treated as unknown, and if an
assignment instruction updates ref, ref.type and ref.state are
both treated as unknown.

4.2.3 Inheritance

We have already established in Theorem 2 that, when a class
extends another class, the derived class inherits the state tran-
sition behaviors also and the complete state model of the
derived class becomes a product of its partial state model
and the state model of its parent.

Interfaces/abstract classes cannot be instantiated, and
thus, we do not extract state models from these. The meth-
ods/attributes of an interface/abstract class are flattened into
the classes that implement/extend these according to their
visibility in the derived class. For example, an abstract class
having a protected void m(){}will be flattened into
one of its derived classes as private void m(){}.

4.2.4 Exception handling

When execution of an instruction raises an exception and
the handler location of the exception is available, the control
is transferred to that location. In contrast, the exception is
considered as unhandled and execution of the path is aborted
if no handler is found for an exception. On occurrence of an
unhandled exception, the exception attribute ofpath summary

of the current path is updated with the type of the unhandled
exception.

Example 6 Consider the Java class shown in Fig. 2, during
lazy initialization if the type of refA is chosen 0 (null), a
NullPointerException occurs at line 17. In that case,
the exception attribute is updated with “NullPointerExcept-
ion”— the type of the exception that occurs.

4.2.5 Returned expression

For a method under symbolic execution, execution of the
return statement is considered as the end of execution of the
current path. Since elements of the path summary must not
contain private variables of a class, the returned expression of
a method need to be manipulated in case it contains internal
variables of the class.Wemanipulate the returned expression
by using the following heuristics:

1. If a returned expression is a constant it is retained as it is.
2. If a returned expression is composed solely of parameters

of the method, it is retained as it is.
3. If a returned expression contains private member vari-

ables and the path condition of the current path have
unique solution of those variables, the values obtained
from the path condition are substituted in the returned
expression. For example, if v1, v2 and v3 are private
member variables and path condition of the path is
(v1 + 2v2 = 3) ∧ (v2 = 4) ∧ (v3 > 50), by solving
the path condition we get unique solutions for v1 and v2
(v1 = −5, v2 = 4). Now if the returned expression is
2v1 + v2, substituting values of v1 and v2 in the returned
expression, we get −6 which does not contain private
variables.

4. If a returned expression cannot be excluded from pri-
vate member variables using the above steps, a symbolic
variable called unknown is assigned into it.

4.2.6 Unknown values

The symbolic execution engine may have to handle unknown
values since sometimes loops and method invocation on an
object reference produce these. An unknown value is nothing
but a symbolic variable of a specific type. When an unknown
value is assigned to a variable, the variable is also treated as
unrestricted in the sense it can hold any value of its domain. A
symbolic expression consisting of a variable having unknown
value is also treated as unknown. A conditional literal con-
sisting of variables having unknown values is considered as
MXL and thus ignored during creation states and transitions.

The presence of unknown values increases size of the
model by increasing number of transitions. However, it does
not lead to miss a transition since unknown is a superset of

123

www.manaraa.com

Extracting finite state representation of Java programs 507

Fig. 4 Modules of StateJ

the exact value which cannot be determined by the symbolic
execution engine.

4.3 Identification of states and transitions

At the end of execution of a path, path summary is computed
which contains the path condition, name of the method under
symbolic execution, name-value pairs of updated member
variables and the returned expression.

Path summaries computed by the symbolic execution
engine are analyzed in this step. Algorithm 1 is used to create
states which include start state, normal states and exceptional
states. After that, Algorithm 2 is used to create possible tran-
sitions including those that end in exceptional states (excep-
tional transitions).

After creating states and transitions, a depth first traversal
is performed from the start state. The traversal yields the
reachable states from the start state. The states those are not
reachable from the start state cannot be assumed by the class
at runtime. For this reason, these unreachable states as well
as the transitions among these states are removed from the
state model.

5 Experimental results

We have developed a prototype tool based on StateJ and car-
ried out experimentation using a few Java programs. The
modules of the developed tool are shown in Fig. 4. It has
three modules namely: class dependency analyzer (CDA),
symbolic execution engine (SEE) and state model extrac-
tor (SME). The CDA module is developed using Apache
BCEL, a open-source bytecode engineering library. CDA
module analyzes class dependencies and computes an order-
ing among the classes. The SME module is developed by
extending symbolic execution engine of Java PathFinder [8].
It executes all methods of a class and produces a set of path
summaries. Finally, the SME module constructs state model
by analyzing path summaries. SME module also performs
reachability analysis to remove unnecessary states and tran-
sitions.

As we have already discussed, we extract state models
from a Java program in a bottom-up manner, by first extract-
ing state models for independent classes and then for other
classes those depend on the classes for which state model
have been already extracted. To measure the complexity of a
class from its source code, we have chosen four well-known
metrics, namely: number of member variables (NV), number
of methods (NM),maximum value of cyclometric complexity
(MCC), and estimated lines of code (ELOC). For each pro-
gram under study, we assumed that the programs has a class
which acts as amain class (markedwith a “(M)” after the class
name, in the Table 3), the state model of which can be treated
as the state model of the whole program. We also measured
the complexity of the state model generated by our technique
using following metrics: number of states (NS), number of
transitions (NT), number of exceptional states (NES), num-
ber of exceptional transitions (NET) and structural complex-
ity of the state model (CCS) which can be computed using
the following formula:

CCS = |NS| + |NT| + |NG| + 2

whereNS is themulti-set of transitions, NT is themulti-set of
event triggers, and NG is the multi-set of atomic expressions
in the guard conditions [22].

We have considered six Java programs that ranged from
low to moderate complexities. We considered the follow-
ing Java applications: Television Remote Simulator, Vend-
ing Machine, a Queue implementation using Stack, Car
Weather controller, eLibrary and Power Window Controller.
The details of these applications along with their source code
complexities are tabulated in Table 3. The complexity of the
extracted state models are tabulated in Table 4. The experi-
ments were carried out with a moderately powerful hardware
having Pentium 3GHz CPU and 1GB of physical memory.
Execution time (in seconds) and physical memory used (in
Megabytes) in the extraction process are also tabulated under
the TIME and MEM column in Table 4.

As can be seen in Table 3, the complexity of the extracted
state model increases with the increase in complexity of the
source code of the input program. Television Remote Sim-
ulator is the simplest and Power Window Controller is the
most complex one in terms of ELOC and MCC. The CCS
values (refer Table 4) of the state model of these applications
also indicate that Television Remote Simulator has the sim-
plest state model and Power Window Controller has the most
complex state model.

The applicationQueue implementation using Stack shows
slightly different behavior. The statemodel of it has relatively
more CCS value though it does not seem to have a complex
source code. The reason is that, number of member variables
(NV) are relatively high in the Stack class. Moreover, the
stack class uses an array to implement its functionalities. For
this reason, the number of member variables adds upwith the

123

www.manaraa.com

508 T. Sen, R. Mall

Table 3 Complexity of the chosen applications

Application name Application details

NC Class name NV NM MCC ELOC

Television remote 3 PowerState 3 5 3 61

PowerState2 1 1 1 25

Television (M) 4 9 3 65

Vending machine 2 Dispenser 3 3 5 43

Vending machine (M) 5 6 3 82

Queue using stack 2 Stack 5 7 6 95

Queue (M) 2 5 3 73

Car Weather controller 5 TemparatureSensor 2 3 2 20

WeatherSensor 2 3 4 62

WiperController 1 6 2 82

ACController 5 7 4 130

CentralController (M) 5 10 17 193

eLibrary 6 User 6 12 1 74

InternalUser 1 2 2 23

Book 0 2 1 21

Document 6 18 2 92

Loan 2 5 3 42

Library(M) 4 19 3 192

Power window controller 3 PWCStates 5 7 3 85

PWCEvents 12 14 3 119

PWCMain (M) 4 16 6 675

Table 4 Experimental results

No. Application name NS NT NES NET CCS TIME (s) MEM (MB)

1 Television remote 11 18 1 1 37 3 13

2 Vending machine 11 32 1 3 56 5 17

3 Queue using stack 26 102 2 32 180 19 37

4 Car Weather controller 23 153 0 0 273 63 121

5 eLibrary 42 258 1 6 352 120 342

6 Power window controller 50 543 1 19 813 230 421

number of array elements take part in decisions, which in turn
increases number of states and transitions for the class Stack.
As the class Queue uses the class Stack, the large state space
of Stack object also increases the state space ofQueue object.

StateJ identifies exceptional states and exceptional tran-
sitions for several applications. Most of the application
has only one exceptional state representing unhandled
NullPointerException, though an additional excep-
tional state for ArrayIndexOutOfBound is detected for
the application Queue using Stack.

From the above discussion, it can be concluded that StateJ
can extract models from non-trivial Java programs having
moderately complex source code complexities. No other
approach, according to best of our knowledge, can automati-

cally extract states and transitions from non-trivial Java pro-
grams.

A visualization tool can make use of these models for sys-
tem understanding. Currently, we use GraphViz for visualiz-
ing these models. Figure 5 shows a GraphViz [7] screenshot
of the object state model of PowerState class in Television
Remote Simulator application

COTS (component off-the-shelf) components are usually
released without source code and with informal specifica-
tions. Component vendors can release state transition spec-
ifications with the component to support easier integration
of the component. StateJ can be useful for that purpose to
generate state transition specifications for components writ-
ten in Java. In addition, as we already have pointed out,

123

www.manaraa.com

Extracting finite state representation of Java programs 509

Fig. 5 Screenshot of the GraphViz visualization of the state model of
PowerState class

StateJ can assist several regression test selection techniques
in component-based environments [1,5,17].

As already have discussed, StateJ detects and models
unhandled exceptions. Thus, StateJ can also be used to used
to identify faulty method sequences that might lead to an
unhandled exception.

6 Related work

Several research results have been reported in the area of
reverse engineering of state model of a program from its
implementation [2–4,10,12,18–20,26]. In this section, we
present a brief reviewof thesework andprovide a comparison
of our approach with these.

Kung et al. [12] executed the program symbolically to
identify path conditions and computed intervals on the values
of the member variables by analyzing the path conditions.
They created transitions by analyzing howmember variables
are updated in a path. But, computing an interval becomes
impractical when more than one member variable appears
in an atomic condition. For example, consider the following
conditions on integer domain: a > 0, a == 5. For these,
the following intervals can be computed: INT_MIN ≤ a ≤
0, 0 < a < 5, 5 ≤ a ≤ INT_MAX. But, if conditions
include multiple variables, such as a + b > 2, a + b +
c == 2, it is not always possible to compute intervals on
individual variables. In contrast, we represent intervals (or
partitions) abstractly in terms of boolean conditions: (a +
b > 2 ∧ a + b + c == 2), (a + b ≤ 2 ∧ a + b + c ==
2), (a + b > 2∧ a + b + c! = 2) and (a + b ≤ 2∧ a + b +
c! = 2). Secondly, Kung’s approach does not handle objects
appearing in method arguments or the objects instantiated
locally. Moreover, Kung et al. did not consider objects as
parameters of methods. Due to these shortcomings, Kung et
al.’s [12] approach cannot extract state/transitions frommany
applications used for experimentation (discussed in Sect. 5).

Tonella et al. [21] provided an approach for state model
extraction from a class by static analysis. Walkinshaw et
al. [23] also proposed a static analysis-based approach in
which they identified transitions and also their functions from

source code assuming that the states of the program is pro-
vided. Both of the approaches assumed that states are iden-
tified by manual inspection and transitions are created based
on that. Our approach automatically identifies a set of states
defined by themember variables of the class and creates tran-
sitions accordingly.

Koskimies et al. [11] proposed a technique for state chart
extraction based on dynamic analysis. They synthesized
sequence diagrams of the program from the traces collected
from a large number of execution of the program and after
that they synthesized state chart from the analysis of sequence
diagrams. Xie et al. [26] and Dallmaier et al.[3] also pre-
sented dynamic analysis-based approaches to extract state
model. Both of the approaches extract state transition behav-
iors from execution traces by describing states in terms of
inspector methods of the class.

However, dynamic analysis reveals the behaviors only
those that have been exercised by the test case executions.
As a result, the accuracy of a reverse-engineered dynamic
model depends on how the set of inputs are chosen to gener-
ate the traces.

Bandera [2] is another system that performs dynamic
analysis to extract finite state models from source code. It
extracts finite state models from Java source code and gen-
erates model checker specific representations. However, in a
model checker specific finite state representation, states are
defined on the set of all variables of a program and transitions
are defined as state changes due to execution of an instruction.
Consequently, the type of state model generated by Bandera
is not an object state model and thus not directly compara-
ble with our approach. Our approach extracts a finite state
model which is an abstraction of an object of a class from an
observer point of view. The potential use of our approach can
be test case generation, test case selection, program under-
standing, etc.

Somé et al. [18] proposed a technique for reverse engi-
neering the finite state model from C programs. Their tech-
nique extracts states and transitions by statically analyzing
conditional constructs such as switch-case and if-then-else.
However, their technique has been designed for procedural
programs, and therefore, not suitable for object-oriented pro-
grams whereas our approach has been developed specifically
targetted at object-oriented (Java) programs.

7 Conclusion

We have proposed an approach called StateJ to extract the
state model of Java programs. The extracted state model can
have several applications. For example, themodel canbeused
for effective regression test selection in component-based
environment or it can be used in program understanding in
case of missing or obsolete design documents. StateJ repre-

123

www.manaraa.com

510 T. Sen, R. Mall

sents occurrence of uncaught exceptions using exceptional
states and exceptional transitions. So it is possible to iden-
tify method sequences for which a program might raise an
exception. A prototype tool has been developed that imple-
ments our approach. However, the approach has several lim-
itations as mentioned below: (1) size: the size of the state
model in terms of number of states and transitions can be
large. Imprecision introduced due to unknown values further
increases the overall size of the model; and (2) performance:
The time and memory requirements increase significantly as
the complexity of the input program grows. To address the
aforementioned issues, the following future works have been
planned:

1. To introduce hierarchical and concurrent states to cope
upwith the size of themodel, thus increasing comprehen-
siveness. Also, to develop an interactive UI to aid human
users in code understanding.

2. Apply suitable heuristics to improvememory/cpu require-
ments.

Acknowledgments We are thankful to the anonymous reviewers who
provided thoughtful comments on our work which, we believe, have
greatly enriched this work.

References

1. Beydeda, S.,Gruhn,V.:Black- andwhite-box self-testing cots com-
ponents. In: International Conference on Software Engineering and
Knowledge Engineering, pp. 104–109 (2004)

2. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu,
C.S., Zheng, H.: Bandera: extracting finite-state models from Java
source code. In: Proceedings of ICSE, pp. 439–448 (2000)

3. Dallmeier, V., Lindig, C., Wasylkowski, A., Zeller, A.: Mining
object behavior with ADABU. In: Proceedings of the 2006 Interna-
tional Workshop on Dynamic Systems Analysis, WODA ’06, pp.
17–24 (2006)

4. Guéhéneuc, Y.G.: Automated reverse-engineering of UML v2.0
dynamic models. In: Proceedings of the 6th ECOOPWorkshop on
Object-Oriented Reengineering (2005)

5. Gallagher, L., Offutt, J., Cincotta, A.: Integration testing of object-
oriented components using finite statemachines. Softw. Test. Verif.
Reliab. 16(4), 215–266 (2006)

6. Harel, D.: Statecharts: A visual formalism for complex systems.
Sci. Comput. Program. 8(3) (1987)

7. Graphviz—graph visualization software. http://www.graphviz.org
8. Java pathfinder. http://goo.gl/reTQe
9. King, J.C.: Symbolic execution and program testing. Commun.

ACM 19, 385–394 (1976)
10. Koskimies, K.,Mäkinen, E.: Automatic synthesis of statemachines

from trace diagrams. Softw. Pract. Exp. 24(7), 643–658 (1994)
11. Koskimies, K., Systa, T., Tuomi, J., Mannisto, T.: Automated sup-

port for modeling OO software. Software, IEEE 15(1), 87–94
(1998)

12. Kung, D.C., Suchak, N., Gao, J., Hsia, P., Toyoshima, Y., Chen, C.:
On object state testing. In: Proceedings of Computer Software and
Applications Conference, pp. 222–227. IEEE Computer Society
Press (1994)

13. Larsen, L. Harrold, M.J.: Slicing object-oriented software. In:
ICSE, pp. 495–505 (1996)

14. Logozzo, F., Fähndrich, M.: On the relative completeness of byte-
code analysis versus source code analysis. In: Proceedings of
CC ’08, LNCS (2008)

15. Pasareanu, C.S., Mehlitz, P.C., Bushnell, D.H., Gundy-Burlet, K.,
Lowry, M.R., Person, S., Pape, M.: Combining unit-level symbolic
execution and system-level concrete execution for testing nasa soft-
ware. In: ISSTA, pp. 15–26 (2008)

16. Peterson, J.L.: Petri Net Theory and the Modeling of Systems.
Prentice Hall PTR, Upper Saddle River (1981)

17. Sen, T., Mall, R.: State-model-based regression test reduction for
component-based software. ISRN J. Softw. Eng. 2012, 1–9 (2012).
Article No 561502. doi:10.5402/2012/561502

18. Somé, S.S., Lethbridge, T.: Enhancing program comprehension
with recovered state models. In: IWPC, pp. 85–96 (2002)

19. Suman, R.R., Mall, R., Sukumaran, S., Satpathy, M.: Extracting
statemodels for black-box software components. J.ObjectTechnol.
9(3), 79–103 (2010)

20. Systä, T., Koskimies, K., Müller, H.: Shimba-an environment for
reverse engineering java software systems. Softw. Pract. Exp.
31(4), 371–394 (2001)

21. Tonella, P., Potrich, A.: Reverse Engineering of Object Oriented
code. Springer, Berlin (2005)

22. Wagner, S., Jürjens, J.: Model-based identification of fault-prone
components. In: EDCC, pp. 435–452 (2005)

23. Walkinshaw, N., Bogdanov, K., Ali, S., Holcombe, M.: Automated
discovery of state transitions and their functions in source code.
Softw. Test. Verif. Reliab. 18(2), 99–121 (2008)

24. Walkinshaw, N., Bogdanov, K., Holcombe, M., Salahuddin, S.:
Reverse engineering state machines by interactive grammar infer-
ence. In: 14th Working Conference on Reverse Engineering, 2007.
WCRE 2007, pp. 209–218. IEEE (2007)

25. Xie, T., Marinov, D., Schulte, W., Notkin, D.: Symstra: A frame-
work for generating object-oriented unit tests using symbolic exe-
cution. In: Proceedings of the 11th International Conference on
Tools and Algorithms for the Construction and Analysis of Sys-
tems, TACAS’05, pp. 365–381 (2005)

26. Xie, T., Notkin, D.: Automatic extraction of object-oriented
observer abstractions from unit-test executions. In: ICFEM, pp.
290–305 (2004)

123

http://www.graphviz.org
http://goo.gl/reTQe
http://dx.doi.org/10.5402/2012/561502

www.manaraa.com

Extracting finite state representation of Java programs 511

Tamal Sen obtained his M.S.
degree from Indian Institute
of Technology, Kharagpur. His
research interests are software
testing and verification. He also
keeps a keen interest in latestweb
and mobile technologies.

Rajib Mall obtained all his pro-
fessional degrees: Bachelor’s,
Master’s, and thedoctoral degrees
from the Indian Institute of Sci-
ence, Bangalore. Heworked for a
few years in the software indus-
try before joining the faculty of
Computer Science and Engineer-
ing at IIT, Kharagpur, where he
is at present holds the position of
a professor and Head of Depart-
ment. He has guided 14 Ph.D.
theses and has published more
than 170 refereed international
journal and conference papers.

He has done consultancy projects for several organizations such as
GeneralMotors, Infosys, Honeywell, besides carrying outGovernment-
sponsored projects. He works mostly in the areas of program analysis
and testing for traditional as well as embedded software systems.

123

www.manaraa.com

Software & Systems Modeling is a copyright of Springer, 2016. All Rights Reserved.

	Extracting finite state representation of Java programs
	Abstract
	1 Introduction
	2 Background concepts
	2.1 Symbolic execution of Java programs
	2.2 State model extraction using static analysis

	3 Framework
	3.1 Path summary
	3.2 State
	3.3 Transition
	3.4 Object state model

	4 Implementation
	4.1 Class dependency analysis
	4.2 Symbolic execution of methods
	4.2.1 Object manipulation
	4.2.2 Loop handling
	4.2.3 Inheritance
	4.2.4 Exception handling
	4.2.5 Returned expression
	4.2.6 Unknown values

	4.3 Identification of states and transitions

	5 Experimental results
	6 Related work
	7 Conclusion
	Acknowledgments
	References

